
The Tip of the Iceberg: On the Merits of Finding Security
Bugs

NIKOLAOS ALEXOPOULOS, Technische Universität Darmstadt, Germany
SHEIKH MAHBUB HABIB, Continental AG, Germany
STEFFEN SCHULZ, Intel Labs, Germany
MAX MÜHLHÄUSER, Technische Universität Darmstadt, Germany

In this paper, we investigate a fundamental question regarding software security: Is the security of SW releases
increasing over time? We approach this question with a detailed analysis of the large body of open-source
software packaged in the popular Debian GNU/Linux distribution. Contrary to common intuition, we find no
clear evidence that the vulnerability rate of widely used software decreases over time: Even in popular and
“stable” releases, the fixing of bugs does not seem to reduce the rate of newly identified vulnerabilities. The
intuitive conclusion is worrisome: Commonly employed development and validation procedures do not seem
to scale with the increase of features and complexity – they are only chopping pieces off the top of an iceberg
of vulnerabilities.

To the best of our knowledge, this is the first investigation into the problem that studies a complete
distribution of software, spanning multiple versions. Although we can not give a definitive answer, we show
that several popular beliefs also cannot be confirmed given our dataset. We publish our Debian Vulnerability
Analysis Framework (DVAF), an automated dataset creation and analysis process, to enable reproduction and
further analysis of our results. Overall, we hope our contributions to provide important insights into the
vulnerability discovery process and help in identifying effective techniques for vulnerability analysis and
prevention.

CCS Concepts: • Security and privacy→ Software and application security.

Additional Key Words and Phrases: Empirical Study, Vulnerability Discovery Rate, Debian GNU/Linux

ACM Reference Format:
Nikolaos Alexopoulos, Sheikh Mahbub Habib, Steffen Schulz, and Max Mühlhäuser. 0000. The Tip of the
Iceberg: On the Merits of Finding Security Bugs. ACM Trans. Priv. Sec. 00, 0, Article 000 (0000), 33 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Modern open-source software (OSS) systems comprise a multitude of interacting components, by
different developers. Such software products are used in various critical aspects of our everyday
lives, such as telecommunications, hospitals, transportations, etc., and therefore their security has
become a critical issue. A number of high-profile vulnerabilities have gathered media attention
over the last years. For example, Shellshock (CVE-2014-6271) was a vulnerability of the widely used

Authors’ addresses: Nikolaos Alexopoulos, alexopoulos@tk.tu-darmstadt.de, Technische Universität Darmstadt, Germany;
Sheikh Mahbub Habib, sheikh.mahbub.habib@continental-corporation.com, Continental AG, Germany; Steffen Schulz,
steffen.schulz@intel.com, Intel Labs, Germany; Max Mühlhäuser, max@informatik.tu-darmstadt.de, Technische Universität
Darmstadt, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 0000 Association for Computing Machinery.
2471-2566/0000/0-ART000 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

000:2 N. Alexopoulos et al.

UNIX Bash shell that allowed attackers to gain complete control of a victim’s machine without any
prior knowledge of their credentials. Shortly after its disclosure, thousands of attacks took place
that included compromising a number of machines and using them as a botnet to launch DDoS
attacks [16]. Another infamous vulnerability, Heartbleed (CVE-2014-0160), was also discovered
by white-hat hackers, but resulted in several exploits, like the leak of millions of hospital patient
data [15]. The fact that known (discovered by white-hats) and patched vulnerabilities can cause such
great disturbance, indicates that yet unknown vulnerabilities (zero-days), which can potentially
affect billions of devices, are an even greater threat. At the same time, the amount of discovered
security bugs is increasing at an impressive pace with over 20 thousand new vulnerabilities dis-
covered through HackerOne’s bug bounty program in 2016 alone [17], while the amount of CVEs
reported in 2017 were more than double compared to any previous year, and a further increase
followed in 2018.

The security community has come up with various defense mechanisms to prevent, locate and fix
vulnerabilities, including formal verification, static/dynamic code analysis and fuzzing. Unfortunately,
formal verification often requires a lot of manual extra work, and does not readily scale to large SW
projects. Even widely used, high-risk components such as the openssl cryptographic library are not
formally verified. In recent years, significant resources have therefore been allocated to automated
vulnerability discovery. State of the art static analysis tools (e.g. [8, 10, 42]) offer ways to check
software for possible vulnerabilities pre-release by pinpointing risky code segments. Additionally,
there has been significant progress in the area of dynamic analysis and fuzzing tools (e.g. [29, 33, 36],
as well as the AFL fuzzer1), that discover vulnerabilities via testing the runtime behaviour of the
program. In practice, even high-criticality SW that was subject to extensive validation will often
still contain (security) bugs, e.g. [9, 22].

There is a general feeling among security researchers and practitioners that the rise in the overall
number of reported vulnerabilities in recent years is attributed to the sizeable increase of the
codebase, and hence the increase of the overall attack surface, while the quality of established and
widely used software components is improving. For instance, Ozment and Schlechter [27] report a
gradual decrease in the number of foundational vulnerabilities of the OpenBSD operating system. In
this paper, we set out to answer a fundamental question regarding the state of open-source software
security, with the popular Debian GNU/Linux ecosystem as a case study: Is the security of software
increasing? - Can we trust software more than in the past or are we introducing vulnerabilities at a
faster rate than we are finding them? In the process of trying to find an answer, we developed the
Debian Vulnerability Analysis Framework, a system for automatically collecting relevant data from
publicly available sources, and for applying different data analysis techniques in a reproducible
manner.
We choose the Debian distribution for our case study due to three important characteristics:

(a) it is one of the biggest and most popular collections of OSS in existence; (b) its policy of only
adopting critical patches into the stable release makes it very amenable to testing our “maturing”
hypotheses; (c) security is handled rather consistently, using a dedicated team with transparent
workflows, public reports and status tracking.

While the dataset is limited to Debian, it is likely that the results can be generalized to all general-
purpose Linux distributions because the vast majority of SW projects and code base underlying the
various distributions is identical: A vulnerability in a particular SW suite will affect the respective
package regardless of how it is distributed. In fact, our dataset likely underestimates the vulnerability
rates of many other popular distributions since the Debian release policy is known to be rather
conservative. However, the precise effects of program selection or release policy is not currently

1http://lcamtuf.coredump.cx/afl/

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

http://lcamtuf.coredump.cx/afl/

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:3

known but in fact it is one of the motivations of our research. More information on how Debian
works can be found in Section 2.
Methodology and contributions:We approach our central question in three steps, by forming
three main hypotheses of increasing depth and detail, which we investigate in dedicated sections
by analyzing plots and employing statistical tests to confirm the statistical significance of our
observations. Our three main hypotheses and a short summary of our results is given in Table 1.

– H1: The vulnerability rate of widely used OSS is showing signs of maturity (Sec-
tion 4):We found no clear signs of maturing behavior (e.g. as expected by standard software
reliability models) when looking into the whole Debian distribution, even when consider-
ing a single stable release over its entire lifetime. More specifically, for popular packages
that underwent major updates, although a maturing behavior was observed until the next
version is released, the introduction of the new version caused a surge in the vulnerability
rate of the older version, indicating that maturity does not necessarily come with time.
Generally, even experienced developer teams find it hard to produce secure software.
– H2: There are less severe bugs and certain types are decreasing (Section 5): H2.1
(severity): Although the ratio of high-severity vulnerabilities compared to the total is drop-
ping, their absolute number does not show a sign of decrease. H2.2 (types): Bug type ratio
also appears stable over time, with memory indexing (CWE-118) and semantic resource
control (CWE-664) bugs accounting for more than half of all vulnerabilities in recent years.
Again no maturing behavior is observed for any of the main vulnerability types. Tools and
methodologies targeting specific types do not have a measurable effect.
– H3: Vulnerability prices for OSS in bug bounty programs are rising (Section 6):
Our investigation of a community-driven bug bounty program showed that there is no
increase in the prices paid, even when considering only high severity vulnerabilities of
popular OSS. Interestingly, the bounties paid on the platform overall, even when considering
proprietary programs, have remained stable over time. Furthermore, the number of bugs
found in the program showed a decreasing trend, showcasing: (a) its effectiveness in the
initial stages, and (b) its relative ineffectiveness in the long term (considering bugs were
found at a non-negligible rate outside the program and prices did not increase). Our results
are in contrast to recent reports of huge rewards offered for zero-days by offensive-oriented
buyers.

Table 1. Short summary of results and contributions

Regarding our main question, we conclude that there is no maturing effect evident for the security
of OSS. An interpretation could be that the current practice of vulnerability discovery is similar
to “scratching off the tip of an iceberg”; it rises up a little2 , but we (developers and the security
community) are not making any visible progress. Our analysis is, to the best of our knowledge, the
first to address the issue looking into such a large variety of software (whole Debian distribution),
spanning multiple versions.

2Typically about one tenth of an iceberg’s volume is above water (the “tip”), while the rest is submerged. By removing
volume (“scratching”) from the tip, part of the previously submerged portion will rise above the surface, so that the ratio is
preserved.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

000:4 N. Alexopoulos et al.

Testing these hypotheses required analyzing data from Debian’s security team’s advisories
to retrieve the vulnerability identifiers (id’s for short) that affected the package versions of the
stable distribution at each point in time. We repeated the procedure with the reports of the LTS
(long-term support) team. Then, we retrieved the CVE numbers of those bugs, allowing us to better
estimate when they were first publicly disclosed. We used this data to search for trends in the
vulnerability rates of Debian overall, specific stable releases, and single programs. By utilizing
the NVD’s database, we then matched the CVEs with their assigned severity score (CVSS) and
type (CWE), allowing us to make further inferences on trends considering bug severity and type
(see H2). Finally, to investigate the hypotheses relating to bug bounty prices (H3), we retrieved
all publicly available data from the HackerOne platform and analyzed it. In each case, the Laplace
trend test and ordinary least squares regression (OLS) were used to support our observations from
the manual analysis (plots) of the data.

To achieve our results, we developed the DVAF (Debian Vulnerability Analysis Framework – see
Section 3) for vulnerability data analytics on software contained in Debian Linux. It automatically
mines publicly accessible vulnerability repositories, such as the National Vulnerability Database
(NVD) and Debian Security Advisories (DSA), in order to create datasets for applying different data
analysis techniques in a reproducible manner. We publish the DVAF to enable further reproducible
analysis (e.g. by investigating some of the questions we raise later in the paper).

2 BACKGROUND & TERMINOLOGY
In this section we briefly go over some necessary material for the comprehension of the paper.
The Debian GNU/Linux distribution: Debian is a distribution of the GNU/Linux operating
system including over 40 000 software packages, covering a significant portion of all widely used
OSS in existence [5] (for comparison 4 000 in Red Hat). All packages are open source and free
to redistribute, usually under the terms of the GNU General Public License [35]. Debian officially
supports 9 different architectures, and several other operating systems (e.g. Ubuntu, Raspbian) are
based on it. It follows a conservative maturing release cycle aiming for maximum production-level
stability and security for its stable release. The stable release is updated about every 2 years and
only patches are applied to the packages during its lifetime. In the meantime, developers and testers
have time to examine and patch the newer versions of the packages to be introduced in the next
stable release. In this phase, these packages comprise the testing distribution. Debian releases
are characterized by a number and a name, traditionally from Toy Story3. Security vulnerabilities
are handled in a transparent manner by the Debian security team [1]. The security team reviews
incident notifications for the stable release (only) and after working on the related patches, publishes
a Debian Security Advisory (DSA). The DSAs contain detailed information on the vulnerability,
including the affected packages and the corresponding CVE numbers.
Statistical trend tests: To support observations made via visual inspection of plots, it is often
required to provide evidence that the observations carry statistical significance. Therefore, specif-
ically in the field of reliability theory, the Laplace trend test has been traditionally employed to
support evidence of a decrease in the rate of failures of a system. It tests if the distribution follows
a Poisson process or there is an increase or decrease in the rate of events (failures) taking place.
Although the Laplace test is mathematically not entirely suitable for the scenario of vulnerability
discoveries [28] (as it does not satisfy the independence requirement), it has been widely used by
seminal previous work [27, 31, 43] in the area and therefore it is also employed by us (always with
a pinch of salt). Although statistical tests are important to support our observations, they do not

3For an overview of Debian Releases see https://www.debian.org/releases/.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

https://www.debian.org/releases/

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:5

offer much to the presentation of the paper, and as such, graphical representations of the Laplace
tests, as well as the complete statistical test results are confined to the appendix.

3 DATA COLLECTION AND THE DVAF
During the dataset creation process, an important goal was to construct a platform that would
provide themeans for researchers to validate and extend our results in a reproducible way. Therefore,
we offer an extensible platform that automatically generates up-to-date datasets via parsing relevant
repositories. The framework consists of two basic components, data collection (Input) and data
analysis (Analysis). These abstractions are in turn instantiated by various modules in an extensible
way, as shown in Fig. 1. Our implementation consists of around 1 000 lines of python3 code and is
available as open-source on github4.

Data Collection

DLA collect

DSA collect

CVE collect

Bounty collect
...

...

Data preparation

Analysis

Plot

Laplace test

Linear Regression

Fig. 1. The DVAF’s extendable architecture and workflow

The currently implemented modules work as follows:
DSA Input: Debian Security Advisory text is automatically collected via downloading the html
source from Debian’s security information pages, and then applying the relevant filters and regular
expressions to extract the names of the affected packages, the date of the advisory, and the associated
CVE references. The URLs of DSA pages are of the form https://www.debian.org/security/YYYY/
dsa-NNNN, with YYYY standing for the year when the DSA was reported, and NNNN for the unique
DSA identifier.
DLA Input: Debian long-term support advisories are automatically collected by parsing the text
of entries of the debian-lts-announce mailing list. The same information points as in the case of
the DSAs are extracted from the mail text. DLAs are available over https with URLs of the form
https://lists.debian.org/debian-lts-announce/YYYY/MM/msgXXXXX.html.
CVE Input: CVE data, including the date of the CVE, and various metadata (CVSS score, CWE
type etc.) are collected by employing the cve-search5 tool, a tool for local lookups on reported
CVEs.
Bug bounties Input: Bug bounty data are collected by scraping the HackerOne platform’s publicly
visible portion. All available information is obtained (product affected, date, bounty amount, etc.)

4https://github.com/nikalexo/DVAF
5https://github.com/cve-search/cve-search

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

https://www.debian.org/security/YYYY/dsa-NNNN
https://www.debian.org/security/YYYY/dsa-NNNN
https://lists.debian.org/debian-lts-announce/YYYY/MM/msgXXXXX.html

000:6 N. Alexopoulos et al.

by utilizing the platform’s API6.
Data preparation: The preparation of the data consists of manual corrections of known mistakes
in the vulnerability reports, dealing with package versioning and possible date differences between
the DSA and CVE reports, and formatting the data in a standard, transferable format.
For example, DSA-2103 does not include a CVE reference, although CVE-2010-3076 references

the DSA and matches its description. We identified a number of such issues. Furthermore, due to
trademark issues regarding the Mozilla logo, Mozilla products were distributed under alternative
names in Debian from 2006 to 2016 (Iceweasel instead of Firefox, Iceape instead of Seamonkey,
Icedove instead of Thunderbird). Also, some packages have names based on the software version
they distribute (e.g. php5 and php7.0), while others, such as the Linux kernel have changed their
naming conventions over time (from kernel-* to linux).
Note that the manual effort is a one-time process, as appendable lists with package name

changes etc. are maintained as configuration files, and the rest of the process is automated. As the
date of vulnerability disclosure, we choose the earliest of the dates reported in the DSA and the
corresponding CVE. Vulnerabilities for source packages are grouped by month and a time-series of
vulnerability incidents is created for each source package. For most of our studies, we created a
single time-series for all the versions of a package using regular expression rules, however this
can be configured. All data points are stored in json text representations of python dictionaries.
Vulnerabilities are grouped in month intervals and a python dictionary src2month holds the time-
series corresponding to each source package.
Analysis functionality: To check our hypotheses, we developed a number of analysis and plotting
scripts andmade an effort to render them re-usable to the extent possible. The basis of the framework
can be used for other studies or as a starting point for software security metrics and risk assessment
methodologies.

4 VULNERABILITIES IN DEBIAN
In this section, we present an overview of the Debian ecosystem w.r.t. its security characteristics
and draw some interesting conclusions, aiming to investigate H1. Contrary to previous studies
(e.g. [2, 12]), we do not investigate the vulnerability rate of specific versions of software during
their development cycle and immediately after their introduction, but the software versions that
are included in the corresponding stable releases of Debian. The question we ask ourselves in this
section is whether there are signs that the security quality of software is increasing over time; in
other words, whether we have reached the point where the vulnerability discovery rate in stable
versions of popular software is slowing down. Therefore, we choose to study the raw vulnerability
numbers discovered in Debian packages, rather than their vulnerability density, a choice that we
also discuss later on. In Fig. 2, we see the distribution of vulnerabilities among source packages of
Debian for the years 2001-20187. In the figure, packages that had at least two vulnerabilities in the
specified time frame are included, yielding a total of 634 source packages. An additional 561 source
packages had a single vulnerability and were not included in the figure for readability reasons (the
complete figure is available in the appendix).
The rich club effect: Interestingly, the distribution is characteristically heavy-tailed (notice that
the y axis is logarithmic) with a few packages dominating the total vulnerabilities reported and
a long tail of a large number of packages with only a few vulnerabilities. Inspecting the plot
6During the revision process of the paper, we noticed that the new HackerOne API is now only available for a fee, whereas
an older version of the API was available for free during our study.
7Our analysis in this paper is limited to data until the end of 2018 for two reasons. First, it is the last completed year at
the time of writing. Second, some time is needed for entries in the NVD to be filled with information (e.g. severity, type)
regarding discovered vulnerabilities.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:7

li
n
u
x

ic
e
a
p

e
sa

m
b
a

ty
p

o
3
-s

rc
p
y
th

o
n
-d

ja
n
g
o

x
p

d
f

q
u
a
g
g
a

g
ra

p
h
it

e
2

w
p
a

su
d
o

se
n
d
m

a
il

sy
m

fo
n
y

m
o
v
a
b
le

ty
p

e
-o

p
e
n
so

u
rc

e
o
p

e
n
v
p
n

p
d
fk

it
g
a
im

d
n
sm

a
sq

k
d
e
b
a
se

w
g
e
t

m
e
rc

u
ri

a
l

t1
li
b

jr
u
b
y

li
b
w

m
f

li
b
g
c
ry

p
t2

0
tr

a
c
e
ro

u
te

-n
a
n
o
g

p
o
u
n
d

a
c
p
id

li
b
sp

ri
n
g
-j

a
v
a

tn
e
f

e
p
ic

c
sc

o
p

e
li
b
p
h
p
-a

d
o
d
b

w
e
b
sv

n
x
e
n
-q

e
m

u
-d

m
-4

.0
x
e
rc

e
s-

c
d
is

c
o
u
n
t

w
3
m

-s
sl

m
a
sq

m
a
il

k
d
e
li
b
s-

c
ry

p
to

ls
h
-u

ti
ls

lu
rk

e
r

li
b
n
e
t-

d
n
s-

p
e
rl

li
b

d
b

d
-p

g
-p

e
rl

sh
ib

b
o
le

th
-s

p
2

li
b
so

u
p
2
.4

x
d
g
-u

ti
ls

rt
m

p
d
u
m

p
m

a
n
2
h
tm

l
in

te
rc

h
a
n
g
e

w
3
m

m
e
e

n
o
w

e
b

lf
tp

g
a
to

s
b
m

v
k
is

m
e
t

m
y
d
n
s

h
o
st

a
p

d
x
m

m
s

x
w

in
e

n
e
ta

ta
lk

ir
c
d
-h

y
b
ri

d
/
ir

c
d
-r

a
tb

o
x

fe
x

li
b

o
tr

li
b
x
c
u
rs

o
r

li
b
st

ru
ts

1
.2

-j
a
v
a

re
q
u
e
st

s
a
c
ti

v
e
m

q
g
st

-p
lu

g
in

s-
u
g
ly

1
.0

g
o
la

n
g
-1

.1
1

101

102

103

V
u

ln
er

a
b

il
it

ie
s

Fig. 2. The distribution of vulnerabilities per package (years 2001-2018). Every tenth package name appears
on the x axis for space reasons. The y axis is logarithmic. Packages with at least two vulnerabilities are taken
into account.

101 102 103

Vulnerabilities

10−2

10−1

100

cc
d

f

data

power-law fit

(a) A log-log plot (complemen-
tary cumulative distribution
function) of the distribution of
Fig. 2.

’01 ’03 ’05 ’07 ’09 ’11 ’13 ’15 ’17

Year

0

200

400

600

800

1000

1200

1400

T
o
ta

l
v
u
ln

er
a
b
il
it

ie
s

(b) Total vulnerabilities reported
per calendar year (2001-2018).

’01 ’03 ’05 ’07 ’09 ’11 ’13 ’15 ’17

Year

0

1

2

3

4

5

6

7

A
v
er

a
g
e

v
u
ln

er
a
b
il
it

ie
s

p
er

p
a
ck

a
g
e

(c) Average vulnerabilities per
package (that had at least one se-
curity incident in that year) per
calendar year (2001-2018).

Fig. 3. Vulnerabilities: distribution and trends.

(Fig. 3a) of the probability distribution of the data in (double) logarithmic axes, we can observe
a near-straight line, indicative of a potential power-law distribution (Zipfian). Power-laws are
heavy-tailed distributions that are the result of generative mechanisms like scale-free networks or
the distribution of wealth in society (Pareto distribution). Following detailed statistical testing using
the seminal methodology of Clauset et al. [13] and the powerlaw package [4], we fit a power-law of
the form p(x) ∼ x−k , x > xmin with k = 2.02 and xmin = 2 , where x is the number of vulnerabilities

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

000:8 N. Alexopoulos et al.

and p their probability density function8. In short, we observe that the majority of vulnerabilities is
discovered in a small set of packages, with the rest contributing little to the total number. Although
the distribution of vulnerabilities fits a power-law, identifying the cause of this distribution is not
trivial and is required in any case, although it falls out of the scope of this study. Other heavy-tailed
distributions (power-law with exponential cut-off, lognormal) are also possible fits, and in general
very difficult to statistically disprove [13].

One should not jump to conclusions regarding the mechanism(s) that generate this distribution.
Most likely, a combination of mechanisms leads to our observations, including social and time-
dependent factors. However, the hypothesis that the vulnerability distribution is attributed entirely
to the size (in KSLoCs) of the packages was indeed statistically disproved (size does not follow a
heavy-tailed distribution; Fig. 17 of the appendix shows an intuition of this). A high-level generative
mechanism of preferential attachment (the rich get richer), supporting a classic power-law, could
be based on “the more we look the more we find” argument, where more bugs being found for a
component cause more focus on the component, and thus in turn yet more bugs are found. Another
fitting distribution is the power-law with exponential cut-off, where the rich get richer up to a
point. This would explain the case where there is a limit on the rate of bug-finding for each package
even if more resources are dedicated to the task. Both of the aforementioned related heavy-tailed
distributions are possible fits with similar generative mechanisms and collecting more data as time
goes by is required for more definitive statistical tests.
Global observations: Table 2 presents the 20 top vulnerable Debian source packages of all time.
An automated procedure was established to collect the vulnerabilities reported for previous versions
of a package and attribute them to its current version in the stable distribution. Manual checks and
small corrections were subsequently performed (again included in the framework as ready-to-use
configuration files – see Section 3). The Linux kernel turns out to be the most vulnerable component,
followed by the two main browsers in use (Chromium9 and Firefox). The total number of unique
vulnerabilities10 reported in the 18 year period was 10 716, with the kernel accounting for around
9% of the total. During the years 2017-2018, a total of 2 366 vulnerabilities were reported, with
Chromium being by far the most affected package, accounting for 303 vulnerabilities compared to
the next most vulnerable package (the Linux kernel) which was affected by 160 (around 7% of the
total).

Concerning the total number of vulnerabilities reported in theDebian ecosystemw.r.t. time, Fig. 3b
shows a clear upward trend as the years go by. Can this mean that the security quality of the software
is decreasing, despite the considerable effort of developers, security researchers and professionals?
One could argue that the amount of software packages in Debian increased dramatically in recent
years and this is the cause of the increase in the total amount of vulnerabilities reported. Thus,
even one or two bugs that slipped the security measures of the individual maintainers, would
contribute to a big yearly sum. That would be a reasonable explanation, as the stable version
of Debian released in 2002 (Woody) contained only 8 500 binary packages, going up to 18 000
packages with the release of Etch in 2007, significantly increasing to 36 000 in 2013 (Wheezy) and
peaking at 52 000 with Stretch, which was released in June 2017, and at 58 000 with the latest stable
release named Buster, which was released in June 2019. However, we found evidence supporting
the opposite. Interestingly, the number of vulnerabilities per package (among the packages that
had a vulnerability reported for the specified year) also follows an upward trend, a fact obvious

8It is common in literature (e.g. [40]) to ignore the light lower tail and focus on the heavy upper tail when investigating
potential heavy-tailed behavior. In our case, the best fit was achieved for xmin = 9 with k = 1.94, but the fit for xmin = 2
was good enough and explained most of our data points.
9open-source code-base of the proprietary Google Chrome browser.
10Note that a vulnerability may affect more than one packages. More discussion on this follows in this section.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:9

package # total rank #17−18 rank17−18
linux 948 1 160 2
chromium 799 2 303 1
firefox-esr 739 3 147 3
icedove 600 4 127 5
php7.0 386 5 28 19
openjdk-8 309 6 89 7
wireshark 303 7 43 14
xulrunner 211 8 – –
mysql 209 9 47 12
imagemagick 195 10 99 6
iceape 178 11 – –
xen 172 12 59 8
tcpdump 156 13 131 4
wordpress 147 14 46 13
openssl 134 15 13 29
tiff 127 16 55 10
qemu 121 17 36 16
mariadb 116 18 51 11
ruby2.3 84 19 39 15
graphicsmagick 82 20 56 9

Table 2. The top twenty packages with the most vulnerabilities in time periods (i) 2001-2018 and (ii) 2017-2018.

in Fig. 3c. In the latter figure we can even see a smoother, clearer upward trend compared to
Fig. 3b, although the slope of the trend is nearly identical. These observations, together with our
previous assessment that the distribution of vulnerabilities among the packages can be attributed
to a power-law generation mechanism, indicate that there are specific packages that continue to
have large numbers of vulnerabilities for prolonged periods of time. As we can see in Table 2, the
trend is dominated by major projects, some of which we like to think of as leaders in the practice
of secure software development. What is the explanation for this phenomenon?

Do “stable” releases mature?: A typical explanation would be that vulnerabilities were induced
by software upgrades and the number of vulnerabilities affecting a specific version of a package
gradually dropped to zero. An intuitive hypothesis would be that at least for certain stable versions of
a package, the rate of vulnerabilities will eventually decrease. In order to test the claim that specific
versions of a package reach a relatively secure state (few vulnerabilities reported per quarter) and
that subsequent vulnerabilities that are attributed to the package are caused by updates, we perform
a case study on two popular packages, namely PHP and OpenJDK, which recently underwent major
version changes (translated to significant differences in their codebase, in contrast to other packages
like the Linux kernel which follow a very smooth version transition). The hypothesis is that each
major version of a package becomes more secure as time passes, as a result of the hard work of the
security community and that a considerable amount of new vulnerabilities affect only the new code
inserted with the major updates. To test this hypothesis we inspected the vulnerabilities reported
for the newer versions of the packages and checked if they also affect older versions.
PHP: is a popular server-side scripting language that is used by 79% of all websites whose server-
side programming language is known11. We will look into the transition from php5 to the next
11https://w3techs.com/technologies/details/pl-php (November 2019)

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

000:10 N. Alexopoulos et al.

version php7 12 (php6 never made it to the public). The vulnerability history of php5 (see Fig. 4)
indicates that the component is relatively hardened at the time the next version is released. The
vulnerability discovery rate is relatively low and stable for the last months before the launch of
php7. To support our hypothesis, we would expect a good amount of vulnerabilities after this point

Q
1
’0

7

Q
1
’0

8

Q
1
’0

9

Q
1
’1

0

Q
1
’1

1

Q
1
’1

2

Q
1
’1

3

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

0

5

10

15

20

25

30

p
h

p
5

p
er

q
u

a
rt

er

before php7

after php7

Fig. 4. Vulnerabilities of php5, during its presence in the stable release, before and after the introduction of the
next version (php7) in testing. Vulnerability rate: (a) before the launch of the new version: ≈ 4 vuln./quarter;
(b) after the launch of the new version: ≈ 10 vuln./quarter.

to affect the new version (php7) of the software but not older versions (php5.x). However, while we
can indeed observe a substantial spike of vulnerabilities, most of those also affected the previous
version (php5.x). The launch of the new version may have instigated researchers and bug hunters
to look for vulnerabilities induced by the new code, but instead what they found were already
existing vulnerabilities from previous versions - so called regressive vulnerabilities. After detailed
manual inspection of all security incidents tracked by the Debian Security Bug Tracker13, we found
that in the time window of January 2016 - January 2018, out of the 103 vulnerabilities that affected
php7, 81 (79%) also affected version 5 of the software14. Further investigation regarding the nature
of these vulnerabilities shows that a great portion of them are usual programming mistakes (e.g.
input validation errors or integer overflows). Hence, their discovery seems not to be associated
with any advances in the security tools used, rather it may reasonably be attributed to the fresh
eyes that reviewed the code of the newer version.
OpenJDK: We repeat the experiment with OpenJDK, an open source implementation of the Java
Platform (Standard Edition), and since version 7, the official reference implementation of Java.
Version 7 was introduced into the testing distribution of Debian in September 2011 and became part
of stable in May 2013 (Debian Wheezy). It remained part of the stable until the release of Stretch
(June 2017). The next version, OpenJDK-8, became part of the testing distribution in May 2015 and
became part of stable with Debian Stretch (June 2017), replacing version 7. In Fig. 5, we see the
vulnerabilities of version 7 before and after the introduction of the next version. Again, there is
no statistically significant decline in the rate of vulnerability reports, and the introduction of the
next version seems to contribute to the discovery of vulnerabilities of the previous version. To put
things into perspective, out of a total of 38 vulnerabilities that were reported for openjdk-8 in the
time span of June-November 2017, only 2 did not affect version 7, and most of them (31/38) also
affected version 6, released almost 10 years prior.
12Official package name php7.0
13https://security-tracker.debian.org/tracker/
14Attribution of vulnerabilities to affected versions was made according to information about patched versions in the Debian
Security Bug Tracker.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:11

Q
1
’1

3

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

0

5

10

15

20

25

o
p

en
jd

k
-7

p
er

q
u

a
rt

er before openjdk-8

after openjdk-8

Fig. 5. Vulnerabilities of openjdk-7, during its presence in the stable release, before and after the introduction
of the next version (openjdk-8) in testing. Vulnerability rate: (a) before the launch of the new version: ≈ 11.3
vuln./quarter; (b) after the launch of the new version: ≈ 10.6 vuln./quarter.

Debian Wheezy: Although, the detailed investigation of vulnerabilities for PHP and OpenJDK
gave us some useful insights about the current state of software quality, these results cannot
be generalized to other packages. In order to get a more complete view of the effect of new
vulnerabilities on older versions, we study the security history of Debian 7 (Wheezy) that was
released in May 2013 and was supported until recently by the LTS15 team (May 2018). In Fig. 6, we
see the distribution of vulnerabilities per quarter, starting from the release of Wheezy. Even for a

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

100

200

300

400

500

V
u

ln
er

a
b

il
it

ie
s

p
er

q
u

a
rt

er regular

regular*

long-term

Fig. 6. Vulnerabilities that affected packages of the Wheezy Debian release.
*From Q2/2015 to Q2/2016, both Debian 7 (Wheezy) and 8 (Jessie) were supported by the regular security team. This was
due to the fact that current Debian practice is that when a new stable version is released, the previous one (now codenamed
oldstable) is still supported by the regular security team for another year and then passed to the LTS team. Therefore, the
amounts of the regular* period are a higher bound, as some vulnerabilities may have affected only the newer release. We
note that in the LTS phase, only one release is supported at a time.

specific stable release of Debian, we can observe a clear upward trend that continues in the LTS
phase of the software (as expected the trend is statistically significant). These results support our
findings for individual packages and show that the rate of vulnerabilities is not decreasing, and
to the contrary is slightly increasing over time, even for a specific stable release over its whole
lifetime of 5 years.
The shared code effect: Shared code between applications (packages) can lead to the same
vulnerability affecting more than one of them. Since shared code has been shown to be an important
15Starting from 2014, Debian includes an LTS program, in order to extend support for any release to at least 5 years in total.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

000:12 N. Alexopoulos et al.

attack vector [25], we move on to investigate the prevalence of shared vulnerabilities in Debian.
Of a total of 10 716 vulnerabilities affecting Debian packages, 2 462 affect more than one package.
In Fig. 7, we see the number of vulnerabilities that affected at least two packages over time, and
in Table 3 the most prevalent package sets jointly affected by vulnerabilities. We observe that

package sets vuln.
firefox, icedove 363
firefox, icedove, iceape 87
mariadb, mysql 85
firefox, icedove, iceape, xulrunner 57
firefox, iceape, xulrunner 28
firefox, icedove, graphite2 23
icedove, xulrunner 16
xpdf, kdegraphics 15
php7, file 13
imagemagick, graphicsmagick 11 ’01 ’03 ’05 ’07 ’09 ’11 ’13 ’15 ’17

Year

0

50

100

150

200

250

R
ep

ea
te

d

Table 3. Most common sets of packages jointly
affected by vulnerabilities.

Fig. 7. Vulnerabilities affecting at least two Debian
packages.

the package sets of jointly affected packages are dominated by Mozilla products and the duo of
mariadb and mysql. This is attributed to the well-known fact that Mozilla products share a large
portion of their source code (referred to as Core modules16), and mariadb starting as a fork of mysql.
Although for all results presented in this paper we count each vulnerability only once even though
it may affect one or more packages, we did not see any qualitative differences when counting
vulnerabilities multiple times in any of the trends we investigated. Therefore, we can safely conclude
that the shared code effect does not significantly affect the overall trends of vulnerability discoveries
in Debian.

Discussion: In this section, we investigated the distribution of vulnerabilities in the Debian
ecosystem. After detailed examination of the vulnerabilities reported for both individual widely
used packages (case studies on PHP and OpenJDK), and a specific stable release of Debian, we
conclude that the number of vulnerabilities does not visibly decrease over time, even for software
that has been stable for many years. To the contrary, we discerned a relatively stable rate of
vulnerabilities, that shows signs of statistically significant increase over time. In other words, we
are still in the phase of the more we look - the more we find. Although automated security tools and
manual security inspection are becoming more widespread and effective, we have not reached the
point of curbing the vulnerability rate yet.
Our results draw interesting comparisons to studies performed over a decade ago. Rescorla

claimed in [31] that there was no clear evidence that finding vulnerabilities made software more
secure, and that even the opposite may be true, i.e. that finding vulnerabilities, given that their
rate is not decreasing, leads to more risk than good, by allowing hackers to attack unpatched
systems. Another study from 2006 by Ozment and Schechter [27] tried to challenge Rescorla’s
claims and found evidence of a decrease in the vulnerability rate of the foundational vulnerabilities
of OpenBSD in a 7.5 year interval (statistically significant decrease was observed after 5 years from

16https://wiki.mozilla.org/Core

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:13

the release of the sotware). This can be attributed to the very few features available in OpenBSD
and maybe even to its relatively low popularity. Our results show that, more than a decade later, the
security of Debian as a whole, and for PHP and OpenJDK individually, is not increasing. After the
impressive growth of the security community since 2006, we still either have not reached the point
where vulnerabilities have become more difficult to find, or we introduce vulnerabilities faster than
we can find them.

Our results can also be compared to the more recent ones of Edwards and Chen [14] from
2012. By investigating the vulnerabilities of Sendmail, Postfix, Apache httpd and OpenSSL, they
conclude that although the quality of the software under question did not always improve with
each new release, the rate of CVE entries generally begins to drop three to five years after the
initial release, indicating a stage of maturity of the software. Our results do not disprove the fact
that the vulnerability rate of a specific version may begin to drop three to five years after its
release, however, for the software packages of our study, it increased again when the new version
entered the testing phase. This hints to the fact that testing scrutiny is a dominating factor of the
vulnerability discovery process, as “fresh” eyes looking at the code seem to be able to find additional
vulnerabilities. Interestingly, Clark et al. [12] found that, out of all the primal vulnerabilities (i.e.
first exploitable vulnerabilities to be reported for a software release) discovered, 77% of them
affected earlier versions of the software. This result, along with our observations, indicates that the
difficulty of finding a specific vulnerability is subjective, and may vary considerably among different
researchers/testers. Conclusions made in [24] that the unique characteristic of each individual offers
unique bug-discovering potential and that each individual can expect to find a bounded number
of bugs, further support this claim. In short, the process is still more of an art than a well-defined
procedure, and automated tools do not seem to have a measurable impact.
Looking into the bigger picture of software engineering, we can find interesting relationships

between our results and the Laws of Software Evolution, proposed by Lehman in the 1970’s [20]
and revised in the 1990’s [21], with the addition of, among other, the Law of Declining Quality.
This law states that “The quality of E-type systems17 will appear to be declining unless they are
rigorously maintained and adapted to operational environment changes”. Our observations could
be interpreted as showing that we have not yet achieved an adequate degree of rigorousness in our
development and security processes.

5 VULNERABILITY SEVERITY AND TYPES

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
0.0

0.2

0.4

0.6

0.8

1.0
N/A

high

medium

low

Fig. 8. Vulnerabilities severity of the stable release over time.

17E-type systems are, according to Lehman, real-world systems influenced by the environment and people.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

000:14 N. Alexopoulos et al.

After establishing a general picture of the vulnerability landscape, we move on to investigate
our hypotheses regarding vulnerability severity and type.
H2.1 CVE Severity: Since we established that there is no observable decrease in the overall
vulnerability rate of OSS, we proceed to investigate the theory that although more bugs are
discovered, they are less critical and more difficult to exploit than before. Then, one would expect a
decrease of the ratio of high-severity vulnerabilities, compared to less critical ones. In Fig. 8, we see
the progression of the ratio of low, medium, and high severity vulnerabilities, as classified by their
CVSS score. An obvious trend of domination of medium severity vulnerabilities is observed, with a
gradual decrease of the percentage of high and low severity vulnerabilities. We can also see that
low severity bugs represent a very small percentage (under 10%). This can be attributed to the fact
that the Debian security team only issues advisories for bugs that warrant immediate patching, and
often low severity ones are left to be fixed as part of the normal release cycle of the package. We
saw that the percentage of critical vulnerabilities shows a decrease recently, but are high severity
vulnerabilities becoming rarer?

To test this hypothesis, Fig. 9 shows the high-severity vulnerabilities discovered during the whole
lifetime of Debian Wheezy, including its LTS period. It is evident that no decrease is observable, and

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

50

100

150

200

V
u

ln
er

a
b

il
it

ie
s

p
er

q
u

a
rt

er

regular

regular*

long-term

Fig. 9. High severity vulnerabilities of Debian Wheezy. The irregular peak of Q3’17 can be largely attributed
to DLA 1097-1 which contained 86 CVEs affecting tcpdump.

to the contrary a statistically significant increase in the vulnerability discovery rate is observed until
the end of the release’s lifetime. Therefore, there is no sign of maturity even when only considering
critical vulnerabilities of a stable release of Debian. This gives an overall picture, however it does not
mean that all components necessarily follow this trend. More fine-grained study and comparison
of the behaviour of the different packages may offer interesting results, however such comparisons
are consciously left as future work.
H2.2 CVE Types: If software development is just too fast and tools are still limited and not widely
applied, are we at least making progress on some part of the problem? Are certain vulnerability
types being eliminated as a result of better practices and tools (e.g. more secure web programming,
fuzzing tools)? To test this hypothesis, we investigate the distribution of vulnerabilities over time
according to their types. Vulnerability type information is derived from the “Research Concepts”
view (CWE-1000) of the Common Weakness Enumeration (CWE) list. According to the CWE
documentation, this view is mainly organized according to abstractions of software behaviors
and is intended to facilitate academic research into weaknesses. It follows a deep hierarchical
organization where all vulnerabilities can be traced back to 11 root classes. In our study we matched
each vulnerability that was attributed a CWE number with its root class(es). The 7 classes with a
significant number of bugs are presented in Table 4.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:15

root Description
682 Incorrect Calculation, e.g. Integer Overflow

118 Incorrect Access of Indexable Resource (’Range Error’),
mostly Buffer problems

664 Improper Control of a Resource Through its Lifetime,
e.g. Information Exposure, Improper Access Control

691 Insufficient Control Flow Management,
mostly Code Injection, Race Condition

693 Protection Mechanism Failure,
mostly Improper Input Validation (CWE-20)

707 Improper Enforcement of Message or Data structure,
mostly Improper Neutralization (SQL injection, XSS)

710 Improper Adherence to Coding Standards,
mostly NULL Pointer Dereference

Table 4. Vulnerability type classification per root CWE number with most dominant examples in our dataset.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
0.0

0.2

0.4

0.6

0.8

1.0
N/A

710

707

693

691

664

118

682

Fig. 10. Vulnerability types per year of Debian stable. Labels correspond to root CWE numbers (research
view).

The progression of bug types over time is shown in Fig. 10. The plot starts from year 2008,
as this is the time where type classification of bugs started becoming standard practice of the
NVD. Two observations are made. First, a big portion of bugs (N/A) did not fall directly under
a CWE-1000 root class, especially before 2015. This is because many vulnerabilities (especially
older ones) were classified in broad categories, such as CWE-16 “Code weakness” and CWE-17
“Configuration weakness”, which are not compatible with the classes of the Research Concepts
view, and according to CWE suggestions should not be used for mapping bugs – however NVD still
maps to them anyway. Positively, in recent years the portion of unmapped bugs has fallen to under
20% of the total. The second observation is that three types capture most of the classified bugs,
namely Memory Index (118), Improper Resource Control (664) and Protection Mechanism Failure
(693) errors account for more than 70 % of all Debian bugs in 2017, with their ratio relatively stable
since 2008. On the other hand, message structure enforcement errors (707), in most cases improper
neutralization of special characters leading to SQL injection (SQLI) or Cross Site Scripting (XSS),
show a decrease in their prevalence from more than 10% in 2008-2010 to a negligible portion in
2016-2018. This may be a sign that at last some maturity has been achieved for this specific bug

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

000:16 N. Alexopoulos et al.

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

50

100

150

C
W

E
-1

1
8

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

25

50

75

C
W

E
-6

6
4 regular

regular*

long-term

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8
0

20

40

C
W

E
-6

9
3

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

50

100

N
/
A

Fig. 11. Main vulnerability types of Debian Wheezy, including LTS.

type, which is reasonable as these vulnerabilities are suitable for automatic detection. In fact, this
result supports the claims of [6], that automated black-box tools were effective at finding XSS and
SQLI since 2010.

We move on to test for trends in the absolute number of vulnerabilities per type, rather than their
ratio. In Fig. 11, the absolute number of bugs of the three most prevalent types plus the unclassified
ones, are shown for the whole lifetime of the Wheezy release. No decreasing behavior can be
observed for any of the four types, and especially memory errors seems to increase dramatically
during the LTS period of Wheezy. However, no strong claims can be safely made regarding this, as
the incompatibility issues of the CWE directives and the NVD classification hinders reasoning. On
the positive side, the number of unclassified reports significantly drops, signifying the potential for
more complete reasoning in the following years.
Discussion: In this section, we sought evidence supporting the hypotheses that (a) the rate of dis-
covery for severe vulnerabilities is decreasing, and (b) the rate of discovery for specific vulnerability
types is decreasing. Although the ratio of high severity bugs compared to the total is decreasing,
the absolute number of severe vulnerabilities follows a similar statistically significant increasing
trend as the total number of vulnerabilities, with the positive factor that the rate of increase is
smaller compared to the total number of discoveries. Regarding types, we did not find evidence of
a decrease of the prevalence of any of the 3 main types (CWEs 118/664/693), however we noticed
that XSS and SQLI bugs due to improper neutralization are becoming rarer. Memory bugs are still
very prevalent and no maturity has been achieved in this category, even though this type of bugs
is most suitable for automatic detection via fuzzers, and fuzzers like the AFL have become rather
popular in recent years. Our result are in agreement with Li and Paxson’s [23] vulnerability lifetime
measurements in 2017, where XSS and SQLI were measured to have the shortest median life span,
whereas memory issues, like buffer overflows, had a median life span around three times longer.

Fuzzing is an active topic of research but, as of now, AFL and libfuzzer18 are the major / state-
of-the-art approaches in practice. AFL, in particular is not new (although it keeps evolving). If
these tools had a significant impact in comparison to manual search, one would expect a sharp
increase in the vulnerability rate, followed by a decline. Chromium and OpenSSL, for example, have

18https://llvm.org/docs/LibFuzzer.html

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

https://llvm.org/docs/LibFuzzer.html

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:17

been primary targets for in-depth fuzzing; one would hope these efforts have a significant effect.
Unfortunately, based on our data and analysis so far, we cannot confirm this. It will be interesting
to see if such tools have a measurable impact in the near future. Future work on measuring the
effectiveness of automated tools in practice would be appreciated by the community.
It is also valuable to compare our observations to the ones of Tan et al. [37] who investigated

bug characteristics of a subset of our dataset, namely the Linux kernel, Mozilla and Apache, back
in 2014. They found that semantic bugs (defined as non-memory and non-concurrency bugs
according to their CWE classification) were the root cause of most (∼70 %) of the vulnerabilities. We
extend their results by observing trends over time and generalizing them to a complete software
distribution, while getting more detailed insights by using the complete root CWE vulnerability
type classification. Unfortunately, in [37] there is no trend analysis of security bug types over time
to compare with our findings.

6 BUG BOUNTY PROGRAMS
So far, the security quality of OSS does not show clear signs of improvement. Another popular
argument, supported by numerous media reports, is that vulnerabilities are getting more and more
expensive and bug bounties are increasing. This would indicate that they are becoming harder to
find and software is indeed becoming more secure. In this section, we investigate this hypothesis
(H3) and what it tells us about the security quality of OSS in particular, by looking into the publicly
visible reports of the well-known Bug Bounty platform HackerOne19.

HackerOne is a popular source of data for bug bounty research and has been used in important
recent works that generally study the bug bounty ecosystem (e.g. [24, 43]). The Internet Bug Bounty
(IBB) program20 is a community-driven initiative to award rewards for bugs affecting important
OSS21components, running on the HackerOne platform. The program started in late 2013 and is
ongoing as of the time of writing, consisting of a number of projects targeting different software
components. It is managed by an independent committee of security specialists and sponsored by
technology companies and donations.

Table 5 presents a summary of the software covered by the IBB, as well as the total and maximum
bounties paid in each of the projects. Apart from the projects that are named after the software
components they target, there exist two more general projects. The Data project was launched in
2017 and rewards bugs in core infrastructure data processing libraries (e.g. curl), while the Internet
project rewards “the most critical vulnerabilities in the Internet’s history”, and has famously given
rewards for Shellshock ($20 000) and the Key Reinstallation Attacks ($25 000). Perhaps surprisingly,
Adobe’s proprietary Flash Player was included in the program until August 2016 when it stopped
with the argument that “Flash exploitation no longer has the same impact as when we started”. A
total of 569 reports have been awarded a total of more than $600 000 until November 2018 (counting
only the 436 reports with disclosed bounty amounts), with PHP accounting for almost half of all
reports, but less than 30% of the bounties paid. Although there are interesting distinctions to be
made between the projects under the IBB, for the rest of the paper we will consider them as a
uniform set of bug bounties, which to the best of our knowledge represents the most significant
bug bounty program for OSS in existence.
First, we investigate whether security bug reports in the IBB follow the same increasing trend

as they do overall. The top left part of Fig. 12 presents the number of reports that were awarded
bounties by the IBB from 2014 until November 2018. Notably, the number of bounties paid shows

19https://www.hackerone.com/
20https://internetbugbounty.org/
21with the notable exception of Adobe Flash until 2016.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

000:18 N. Alexopoulos et al.

Component Bounty # Disclosed # Total amount ($) Max amount ($) Average amount ($)
PHP 252 236 170 500 4 000 722
Python 65 58 58 000 9 000 1 000
Data 33 18 11 000 1 000 611
Flash 69 50 175 000 10 000 3 500
NginX 4 2 6 000 3 000 3 000
Perl 12 9 7 500 1 500 833
Internet 89 26 122 000 25 000 4 692
Openssl 36 29 45 500 15 000 1 569
Apache 9 8 5 600 1 500 700
Total 569 436 601 100 25 000 1 379

Table 5. IBB dataset summary snapshot on November 2018.

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

25

50

n
u

m
-

IB
B

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

5

10

n
ew

-
IB

B

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

500

1000

n
u

m
-

A
ll

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

200

n
ew

-
A

ll

Fig. 12. Number of claimed bounty reports (left) and new reporters (right) entering the program for IBB (top
row) and the HackerOne platform overall (bottom row) over time.

an increasing trend until 2017 and then a decreasing trend until the end of the period in question.
This behavior shows that the bug bounty program was successful (at least initially), yielding a large
number if reports, and is more similar to the traditional reliability-style hardening behavior we
expected to see (but did not) for vulnerability discoveries in Debian. Is this a contradiction to our
earlier observations? An indicator to support this hypothesis is that the monetary amount of the
rewarded bounties increases over time. To test it, we look into the progression of awarded bounties
over time.

Fig. 13 shows the trend in the amount of bounties rewarded, both for the IBB and for the whole
of the HackerOne platform. The right side of the figure considers only high and critical severity
bugs as classified by the bounty project’s security teams (not CVSS scores – but of similar nature).
Since only a few IBB bugs have been classified as either highly or critically severe, the top right box
plot consists of only a few points. In general, Fig. 13 shows no increase in the level of the bounties
rewarded in any of the 4 cases. On the contrary, the mean and quartiles of the rewards are stable
over time in all cases. In combination with Fig. 12 and our previous observations, this points to the
fact that the decrease in the number of bounties paid in the IBB may be attributed to the decrease of
the attractiveness of the program in comparison to other programs that have entered the platform,
since bugs outside the platform continue getting reported at a non-negligible rate.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:19
14 15 16 17 18

100

102

104

IB
B
-a
ll

Q
1’
14

Q
1’
15

Q
1’
16

Q
1’
17

Q
1’
18

100

102

104

IB
B
-h
ig
h

Q
1’
14

Q
1’
15

Q
1’
16

Q
1’
17

Q
1’
18

100

102

104

A
ll
-a
ll

Q
1’
14

Q
1’
15

Q
1’
16

Q
1’
17

Q
1’
18

100

102

104

A
ll
-h
ig
h

Fig. 13. (5-95%) box plot of USD paid over time for all (left) and only high/critical (right) severity vulnerabilities.
Trend lines for the average (blue) and median (dark red). The only significant OLS trend comes from the top
left plot concerning all the bugs reported in the IBB: a statistically significant decrease of the average as well
as the median bounty. Detailed statistical test results in the additional material.

Upon closer re-inspection of Fig. 12, we can see that the overall rate of reporting in the HackerOne
platform (bottom left) is almost stable over time from the start of 2017, and this correlates with an
increasing incoming flow of new reporters over time, as shown in the right part of the figure. For the
IBB, the spikes in reports correlate with the introduction of new reporters in the program (rather
than older reporters finding additional vulnerabilities). This is an indicator that the continued
attractiveness of a program is important for its success (rather than its attractiveness at its launch).
From the above, we cannot rule out that the IBB may not have a significant market share of

the hacker effort of the platform anymore, and this is the reason its effectiveness is decreasing
over time, although initially being successful. We note here that an external factor that could
lead to non-increasing bounties could be a lack of interest due to a declining user base for IBB
software. It is difficult to estimate the user base of non web-facing software accurately, however
different measurement reports point to a significant user base for software in the IBB. More
specifically, measurement reports on web servers22(Apache and nginx two leading choices), back-
end programming languages23 (“PHP is used by 79% of all websites whose server-side programming
language we know”), programming languages in general24 (Python is the most popular language
with nearly 30% share), and cryptographic libraries [26] (openssl is dominant) show dominant
market shares for software in the IBB at the time of writing. Moreover, note that the report rate
in the IBB does not show any correlation with updates and new releases of Debian. This further
supports our claim that the relative monetary attractiveness of a program is the dominating factor
in the process.
To further investigate our interpretation that the IBB declined in attractiveness over time, we

looked into other aspects of the behavior of IBB reporters (people with at least one IBB report)
in HackerOne. Specifically, on the left side of Fig. 14, we see the ratio of bounties paid to those
reporters for IBB reports, over the total amount they earned in the HackerOne ecosystem over
time. On the right side of the figure, we see the related quantity of the number of reports filed in
the IBB, over the total amount of reports filed by those reporters over time. Both plots indicate that
(except from the anomaly of zero reports in Q3’15) until 2017, IBB reports came from people that
hardly reported in other programs, hence they were focused only on the IBB. After that point in

22https://news.netcraft.com/archives/2019/04/22/april-2019-web-server-survey.html
23https://w3techs.com/technologies/details/pl-php (November 2019)
24http://pypl.github.io/PYPL.html

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

000:20 N. Alexopoulos et al.

time, only a small portion of the reports and associated awards were in the IBB program, rather
they were in other HackerOne programs. This indicates that reporters (old ones, as well as new)
may not have expended a large portion of their effort on the IBB after 2017, instead engaging in
the program rather superficially.

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8
0.00

0.25

0.50

0.75

1.00

A
m

o
u

n
t

ra
ti

o

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0.00

0.25

0.50

0.75

1.00

R
ep

o
rt

s
ra

ti
o rest

in IBB

Fig. 14. Ratio of bounty amounts (left) and number of reports (right) of IBB reporters (at least 1 IBB report at
some point in time) comparing reports in the IBB program against reports for other programs in HackerOne
over time.

Discussion: It is valuable to compare our results with some recent important papers in the area.
Zhao et al. [43] (2015) use the Laplace test to show that 32/49 organizations on HackerOne show a
decreasing rate of vulnerability discoveries in the program and suggest that this indicates a positive
effect and could be used as an indication of the web security of an organization. Considering
that a significant amount of vulnerabilities affecting the software under question continue getting
disclosed outside the bug bounty program, we would attribute this decrease to (a) most importantly,
the limited number of hackers taking part in these programs – according to Maillart et al. [24] each
hacker can only find a bounded number of bugs and each hacker’s unique talents allow them to
find unique bugs, and (b) a relative lack of incentives to find more difficult vulnerabilities – hackers
focus on the low-hanging fruit of newly introduced programs – a claim suggested in both [24, 43].
Allodi’s study of an underground black marketplace [3] shows that prices in such markets are rising
over time, contrary to our results for the IBB. Thus, incentives for grey-hats to claim rewards from
black marketplaces may increase. In fact, Zerodium25, a zero-day exploit acquisition platform selling
information to “a very limited number of eligible customers”, mainly government organizations,
recently increased its rewards for an iPhone remote jailbreak up to 2 million USD. On the same
platform it is advertised that a Linux PHP or OpenSSL remote code execution (RCE) can pay up to
$250 000, while a Linux NginX RCE can pay up to $200 000. Naturally, these prices are a multiple
of what is offered on ethical programs and by vendors themselves, since many hackers would be
reluctant to sell to undisclosed government organizations. The legitimacy and legal implications of
such programs is an issue that has not been discussed enough in the community.
A bright spot comes from the fact that a considerable part of the OSS community may be

considered altruistic and/or content with “swag”/reputation rewards for discovering vulnerabilities,
and therefore the attractiveness of OSS bounty programs cannot be purely evaluated by the
monetary reward. In general, we can say that bugs may indeed become more sparse inside a
bug bounty program, however this can be largely attributed to the limitations of the program
participants and may not be safely generalizable to claims about the overall vulnerability landscape.
Overall, the impact of bug bounty programs, like the IBB is inconclusive at best and warrants
further investigation.

25https://www.zerodium.com/

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:21

7 THREATS TO VALIDITY
In this paper, we cover a wide range of software, based on analysis of automatically collected
publicly available data. Naturally, our results hold for the specific software components under
consideration and no general validity is claimed. There are a number of factors that may influence
our results:
1. (Why not density?) Some studies have looked into the vulnerability rate of software per X

lines of code (vulnerability density). However, this approach does not fit our goal, as we investigate
whether the security quality of the stable versions of software is increasing, or we are introducing
vulnerabilities faster than we find them. Additionally, due to the great range of programming
languages employed throughout the packages of Debian, this approach would not have yielded
meaningful results in our dataset. Interestingly, our findings suggest that the vulnerability density
count, when considering successive releases of a software component may actually be misleading.
This can be attributed to the vulnerability density dropping upon introduction of new features
during the lifetime of a software release, while the absolute number of vulnerabilities may be
increasing. Given our observations that most vulnerabilities of PHP and OpenJDK are located in
core components, an observed drop in the vulnerability density rate would convey a false feeling
of increasing quality.

2. (Employed Metrics) The question here is what to measure: the quality of software development
or the quality of validation/detection/testing? The two are clearly related, yet “software quality” is
difficult to measure objectively. Other important metrics for SW security are the speed, consistency
and reach of patch distribution. In this work, we focus on the rate of vulnerabilities discovered
over time. We observe that according to this metric, the procedures employed in development and
validation of popular and widely deployed SW components is apparently not effective in reducing
the rate of vulnerabilities found over time. This may be an effect of the employed development
model, constantly improving discovery tools and more effort and skills in the community. However,
the question remains: how can there be such a constant or even increasing discovery rate over
significant time frames, and what can we do to improve this result?

3. (Security architectures) Modern SW protection and isolation technology can prevent vulnera-
bilities from interfering with a particular platform or transaction, or or make it hard to weaponize
or scale a SW exploit. However, even mitigated vulnerabilities are typically still reported with a
corresponding reduced CVSS severity rating, since they may lead to attacks in other contexts and
use-cases, or in combination with other vulnerabilities. In that sense, our dataset reflects the effects
of inherent SW protections that objectively affect or prevent a potential SW vulnerability, but not
situational/non-standard measures that address the problem only in specific platforms or use-cases.
Since our goal is to analyze trends in SW vulnerabilities and not a particular platform/use-case, we
believe this is a fair representation of deployed mitigation strategies.

5. (Data quality and availability) As evident by our observations in Section 5, the NVD classifi-
cation of vulnerabilities does not closely follow the proposed CWE directives, although in recent
years this situation has improved. Additionally, some CWE leaf nodes have multiple parents, and
some CWEs have hardly any differences between them. Therefore, we refrain from making strong
claims about vulnerability type trends concerning Fig. 11, erring on the side of caution. Fine-grained
analysis of type trends should be performed in the near future. Additionally, the NVD is known to
contain inaccuracies regarding the vulnerable program versions (e.g. as documented in Nappa et
al. [25]). We expect these inaccuracies not to affect our measurements, since we used the Debian
Security Advisories as the root of our analysis, meaning we considered only those vulnerabilities
which were recognized by the Debian Security Team to affect the package versions included in
the stable release at any point in time. Of course, we cannot rule out that there exist mistakes

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

000:22 N. Alexopoulos et al.

in the Debian Security Advisories or in other fields of the NVD entries (e.g. severity, type), since
these are products of manual work and may include subjective judgement. What we achieved with
our technique is to avoid the known version-related pitfalls of the NVD, as well as additional bias
introduced by different reporting strategies, by only considering vulnerabilities that had related
Debian Security Advisories. Another potential source of bias in our measurements is the practice
of silently patching security vulnerabilities, especially for projects that have automated patch
deployment processes. Although we cannot rule out that vulnerabilities have been silently patched
in projects distributed in Debian, we consider our Debian dataset less affected by such bias in
comparison to previous studies, as the Debian community is a fierce advocate of full disclosure and
the release cycle of Debian that focuses on stable releases goes against automated updates whose
content is not specified in detail.
Furthermore, concerning bug bounties, we only investigated the publicly visible part of the

HackerOne platform, and results may vary when considering the large number of reports that are
classified. Especially the apparent huge difference in the amount of bounties offered by OSS on
HackerOne, in comparison to big companies, e.g. Google, needs to be further investigated.

6. (“You did not test X”) There are many more aspects and hypotheses that could be investigated.
We encourage researchers to validate our results and explore further ideas using our published
framework DVAF.

8 RELATEDWORK
Although vulnerabilities are just a subset of the general class of software defects (bugs), they
have been shown to differ in significant ways to other kinds of bugs, mainly regarding their
discovery [18] and patching process [23] (it was shown that patches fixing security bugs were
significantly different than the rest of the patches), as well as regarding the incentives to find them.
Therefore, in this section, we will focus on works about security issues.

Our work is motivated by the results of Ozment and Schechter [27], presented more than a
decade ago. In the paper, the authors look for evidence that the quality of software is increasing,
by examining the vulnerability rate of the OpenBSD operating system. They conclude that the
rate of foundational vulnerabilities, i.e. vulnerabilities that were part of the first stable release
of the product, is decreasing with time, and present this as an argument that the security of the
software is increasing. In our investigation, we concluded that this is not the case for a large
fraction of the software (in Debian), when considering security over multiple stable versions of
the component. Our results support the line of thought of the 2005 paper by Rescorla [31], who
reported no measurable evidence of an improvement in the security of software, and proposed that
we should perhaps spend our time otherwise. We show that more than a decade later, Rescorla’s
concerns still apply (see also Sec. 4). It is interesting future work to see how the vulnerability rate
and life span in the OpenBSD system has involved over time by recreating the measurements of
Ozment and Schechter [27], however looking only into foundational vulnerabilities would not
make much sense since the amount of code of the first stable release of many OSS projects that is
also part of the current stable release is minimal (e.g. for the Linux kernel).
Apart from the ones mentioned above, there is a lot of work on vulnerability discovery and

lifecycle analysis, and the goal of this section is not to cover it all, but to go over those that connect
with our work. In [11], the authors use weighted average models with constant weight, in order to
predict vulnerabilities of Debian packages, with the goal to use the prediction as a trustworthiness
score for the component. We also follow a similar methodology to collect a part of our data, but
our analysis has a very different goal and detail level. In [12], the authors study the effect of code
familiarity in the vulnerability discovery process. They find out that there is a considerable period
of time, called a “honeymoon”, before the first vulnerability of a component is found, and then

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:23

vulnerabilities are found at a much faster rate. Our research is complementary to theirs, as we
study the subsequent stages of the vulnerability discovery process, from the moment a component
becomes part of a stable distribution. In [2], time-based and effort-based models are shown to be a
good fit for the vulnerability time-series of Windows versions, indicating that these factors certainly
affect the vulnerability discovery process. Contrary to their study, we investigate a much larger
body of OSS over multiple stable versions. However, estimating the effect of effort in the discovery
process could be a natural next step in the research line introduced with this paper. In [19], the
authors try to create vulnerability discovery models of single versions of Apache and MySQL by
taking into account the shared code of those versions with the following ones. Their results are in
line with our analysis of OpenJDK and PHP, as they also show that shared code between successive
versions of a component may lead to an increase in the vulnerability rate of the earlier version, due
to an increase in the user base.
The line of work based on the WINE dataset [7, 25, 41] (a large dataset of Symantec anti-virus

logs), which provides several measurements on attacks in the wild, is also relevant to our research.
Specifically, Nappa et al. [25] study the patching behaviours of users and focus on the issue of
shared code between different software or different versions of the same software that can lead
to successful attacks, even though users think they have patched a vulnerability. This work is
complementary to our research, as it investigates a latter part of the vulnerability lifecycle (i.e. how
fast users install patches after they have been made available), while we are investigating an early
part of the vulnerability lifecycle (i.e. the discovery rate and characteristics of new vulnerabilities).
The insights provided by this work on the importance of shared code motivated us to investigate
the issue in Section 4.
Li and Paxson [23] perform a large-scale study on security patches based on the NVD and

commits in the projects’ version control systems. They focus on static characteristics of security
bugs (e.g. the amount of time they are present in the code, how this is affected by their type),
while we investigate how characteristics evolve over time, something not addressed by them. Thus,
unfortunately we cannot directly compare our results to theirs. We discuss our findings regarding
vulnerability types in relation to theirs in Section 5. Overall, our findings nicely complement and
support their claim for the need for more effective testing and auditing processes for OSS. Not only
do vulnerabilities remain in the code for a long period of time (as they find), but their discovery
rate seems not to decline even when considering only severe vulnerabilities or specific types (as we
find). We repeat their concerns regarding the need for more effective vulnerability-finding tools and
development processes in Section 9. In the same section, we also provide new important insights
gained from our results: the need for longer-term support, more effective bug bounty programs for
OSS, and new more expressive security metrics and continuous measurement.
In [32], the authors fit several time-series models to the vulnerability rate of a number of

software components, and report reasonable prediction accuracy. Although we do not attempt
any predictions, this could be an interesting future work direction, as we have a richer and more
complete dataset. In [14], a decrease in the vulnerability rate of specific series of software releases
is noted after 3 to 5 years from the initial release. However, as we have noted, the release of the
next series may again contribute to an increase of the vulnerability rate. Finally, in [37], the authors
study bugs in three open source projects, the Linux kernel, Mozilla and Apache. Their study studies
bugs of any kind and security bugs in particular are discussed only briefly, mostly focusing on the
effect bug types have on bug severity. We have compared our results to theirs in Section 5. Since
generic bugs and vulnerabilities behave very differently, our work is complementary to theirs, with
minimal overlap. Furthermore, we consider the whole Debian ecosystem, while they only consider
a subset of it consisting of three components.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

000:24 N. Alexopoulos et al.

9 DISCUSSION AND RECOMMENDATIONS
In this section we highlight the implications of the insights gained from our detailed and large-
scale investigation into the vulnerability landscape of open-source software. These affect both
development, distribution and testing procedures and guidelines, as well as tools, bug-finding
incentives and security metrics.
Need for improved procedures:
– Longer-term support: Our measurements point out that the current duration of long-term/stable
branches may not be enough to observe a maturing behavior. The maintenance of longer-term
branches may be required for situations where security is an important factor.
– Stricter application of coding guidelines and testing strategies: Memory errors, like buffer over-
flows, continue to dominate the landscape. Further education of developers on memory issues and
requirements to strictly follow guidelines could go a long way towards improving the situation.
Furthermore, the improvement and deployment of development-time testing, e.g. commit-based
static analysis methods like VCCFinder [30], that can be readily incorporated in development
processes, should be pursued.
– Threat indicator sharing: Considering that measurements have shown that vulnerabilities have
been used for zero-day attacks in the wild and have remained undiscovered for extended periods of
time [7], it is valuable for organizations to share information regarding attacks with each other.
Therefore, effective information sharing platforms are required. Efforts such as MISP [39] are
encouraging and should be pursued further.
New detection tools and improvements: More and better ways of finding software bugs during
all phases of the software lifecycle (especially in the “testing” phase of the Debian release cycle)
are needed. Tools like the kernel fuzzer syzcaller26 paired with automatic continuous fuzzing of
kernel branches (syzbot) are steps in the right direction. Furthermore, Google’s recently launched
OSS-Fuzz project27 is an interesting positive initiative and may produce measurable positive results
in the near future. Given that memory bugs are still a large source of vulnerabilities broader and
yet faster runtime memory error detectors like ASan (AddressSanitizer [34]), as well as detectors
for other dangerous behavior (e.g. UBSan28 for undefined behavior), are needed.
Need for more attractive bug-bounty programs for OSS: Our results showcase that bug
bounty programs can be very effective, however increasing prices may be required to guarantee
their long-term effectiveness. The Internet Bug Bounty (IBB) program is a positive initiative that
has led to the discovery of many vulnerabilities in widely used OSS projects. The community should
look to increase the attractiveness of OSS bug-bounty programs in order to reap long-term benefits,
and not only “low-hanging fruit”. The monetary gap between bounties paid to white-hat hackers in
comparison to “grey” marketplaces, and the effects of this gap, should also be seriously discussed.
Need for more expressive security metrics and continuous measurement: In this paper,
similarly to the vast majority of similar studies in the past, we have focused on trends and at-
tributes of disclosed vulnerabilities. More accurate and expressive metrics will further enhance
our understanding of the problem and help set our priorities, and therefore progress in this area
is critical. Such advancements can also enable more effective security assurance. For example,
assessing the effort that was required to discover vulnerabilities (measuring the difficulty to find
them instead of their number), would better express the security quality of software. To the best
of our knowledge this is an open problem. Furthermore, studies investigating the life span of

26https://github.com/google/syzkaller
27https://google.github.io/oss-fuzz/
28https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:25

vulnerabilities (e.g. [23, 27]) are either based on manual effort to link vulnerability reports to the
commit the vulnerable code was introduced in, or on heuristics with limited accuracy. More work
on this problem is needed. Another problem of most empirical measurement studies is that they
analyze a snapshot of data at some point in time. Given that the security landscape is changing
at a high rate, we need studies that are aimed at continuous measurement and plug-and-play
reproducibility over time.
Need for more effective mitigation measures: Since vulnerabilities are seemingly not rapidly
depleted, continued focus on developing and deploying mitigation measures is crucial. Software
countermeasures, like control-flow integrity or sandboxing of components/libraries, coupled with
hardware (CPU) features like NX/XD bits29, SMEP30/SMAP31/CET32, as well as recent low-overhead
isolation techniques [38] limit the effectiveness of a range of vulnerabilities that could lead to
control-flow hijacking exploits, and make the development of such exploits more difficult. The
same can be said for programming languages designed for safety, such as Rust33, although the
vast amount of systems code that is written in traditional programming languages that are not
designed with safety in mind (e.g. C/C++), means that this later countermeasure is more long-term
oriented than the other mitigations mentioned above. Improvements of all the above-mentioned
countermeasures, as well as development of new ones targeting other types of exploits should be
emphasized imminently.

10 CONCLUSION
In this paper, we presented the results of our large-scale investigation into the Debian GNU/Linux
vulnerability landscape, from a different perspective compared to most of the previous work on
software security. As the title of the paper suggests, we arrived at the conclusion that there is no
compelling evidence suggesting that OSS products are becoming more secure. Overall, especially
when considering multiple stable versions, we conclude that we are not finding vulnerabilities fast
enough, and therefore we are not making the iceberg any smaller. We further supported this result
with an investigation of vulnerability trends for notable bug types, as well as for trends in bug
bounty programs, showing that the effect of automatic analyzers and tools seems rather limited,
while bug bounty programs for OSS lack in long-term attractiveness. Our results raise questions
about the effectiveness of applied processes, and along with the DVAF, open the door for further
systematic and scientific quantitative studies.

However, not all is bleak. The community is making impressive effort in producing new fuzzing
and static analysis tools, in addition to hardware security features, while vulnerability reporting
practices are showing signs of improvement. That being said, the need for better metrics and
measurement practices (both micro- and macroscopic), as well as studies going further than the
measurement of the vulnerability discovery rate, are at an all-time high.

REFERENCES
[1] 2016. Debian security FAQ. https://www.debian.org/security/faq
[2] Omar H Alhazmi and Yashwant K Malaiya. 2005. Quantitative vulnerability assessment of systems software. In

Reliability and Maintainability Symposium, 2005. Proceedings. Annual. IEEE, 615–620.
[3] Luca Allodi. 2017. Economic factors of vulnerability trade and exploitation. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security. ACM, 1483–1499.

29no execute / execute disable bits to mark areas of memory as non-executable.
30Supervisor Mode Execution Prevention
31Supervisor Mode Access Prevention
32Control-flow Enforcement Technology
33https://www.rust-lang.org/

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

https://www.debian.org/security/faq

000:26 N. Alexopoulos et al.

[4] JeffAlstott, Ed Bullmore, andDietmar Plenz. 2014. powerlaw: a Python package for analysis of heavy-tailed distributions.
PloS one 9, 1 (2014), e85777.

[5] Juan José Amor, Gregorio Robles, Jesus M González-Barahona, and Francisco Rivas. 2009. Measuring Lenny: the size
of Debian 5.0. (2009).

[6] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. 2010. State of the art: Automated black-box web application
vulnerability testing. In 2010 IEEE Symposium on Security and Privacy. IEEE, 332–345.

[7] Leyla Bilge and Tudor Dumitras. 2012. Before we knew it: an empirical study of zero-day attacks in the real world. In
Proceedings of the 2012 ACM conference on Computer and communications security. ACM, 833–844.

[8] Priyam Biswas, Alessandro Di Federico, Scott A. Carr, Prabhu Rajasekaran, Stijn Volckaert, Yeoul Na, Michael Franz,
and Mathias Payer. 2017. Venerable Variadic Vulnerabilities Vanquished. In 26th USENIX Security Symposium (USENIX
Security 17). USENIX Association, Vancouver, BC, 186–198.

[9] Matteo Bortolozzo, Matteo Centenaro, Riccardo Focardi, and Graham Steel. 2010. Attacking and fixing PKCS#11
security tokens. In Conference on Computer and Communications Security (CCS). 260–269.

[10] Fraser Brown, Shravan Narayan, Riad S Wahby, Dawson Engler, Ranjit Jhala, and Deian Stefan. 2017. Finding and
Preventing Bugs in JavaScript Bindings. In Security and Privacy (SP), 2017 IEEE Symposium on. IEEE, 559–578.

[11] Sven Bugiel, Lucas Vincenco Davi, and Steffen Schulz. 2011. Scalable trust establishment with software reputation. In
Proceedings of the sixth ACM workshop on Scalable trusted computing. ACM, 15–24.

[12] Sandy Clark, Stefan Frei, Matt Blaze, and Jonathan Smith. 2010. Familiarity breeds contempt: The honeymoon effect
and the role of legacy code in zero-day vulnerabilities. In Proceedings of the 26th annual computer security applications
conference. ACM, 251–260.

[13] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. 2009. Power-law distributions in empirical data. SIAM
review 51, 4 (2009), 661–703.

[14] Nigel Edwards and Liqun Chen. 2012. An historical examination of open source releases and their vulnerabilities. In
Proceedings of the 2012 ACM conference on Computer and communications security. ACM, 183–194.

[15] Jim Finkle and Supriya Kurane. 2014. U.S. hospital breach biggest yet to exploit Heartbleed bug: expert. Reuters (2014).
[16] Andy Greenberg. 2014. Hackers are already using the shellshock bug to launch botnet attacks. Wired (2014).
[17] HackerOne. 2017. The Hacker-powered security report 2017. https://www.hackerone.com/resources/

hacker-powered-security-report
[18] Munawar Hafiz and Ming Fang. 2016. Game of detections: how are security vulnerabilities discovered in the wild?

Empirical Software Engineering 21, 5 (2016), 1920–1959.
[19] Jinyoo Kim, Yashwant K Malaiya, and Indrakshi Ray. 2007. Vulnerability discovery in multi-version software systems.

In High Assurance Systems Engineering Symposium, 2007. HASE’07. 10th IEEE. IEEE, 141–148.
[20] Meir M Lehman. 1980. Programs, life cycles, and laws of software evolution. Proc. IEEE 68, 9 (1980), 1060–1076.
[21] Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry, and Wladyslaw M Turski. 1997. Metrics and laws of

software evolution-the nineties view. In Proceedings Fourth International Software Metrics Symposium. IEEE, 20–32.
[22] Nancy G. Leveson. 2009. Software Challenges in Achieving Space Safety. Journal of the British Interplanetary Society

(JBIS) (2009).
[23] Frank Li and Vern Paxson. 2017. A large-scale empirical study of security patches. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security. ACM, 2201–2215.
[24] Thomas Maillart, Mingyi Zhao, Jens Grossklags, and John Chuang. 2017. Given enough eyeballs, all bugs are shallow?

Revisiting Eric Raymond with bug bounty programs. Journal of Cybersecurity 3, 2 (2017), 81–90.
[25] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Dumitras. 2015. The Attack of the Clones: A

Study of the Impact of Shared Code on Vulnerability Patching. In 2015 IEEE Symposium on Security and Privacy, SP
2015, San Jose, CA, USA, May 17-21, 2015. 692–708. https://doi.org/10.1109/SP.2015.48

[26] Matus Nemec, Dusan Klinec, Petr Svenda, Peter Sekan, and VashekMatyas. 2017. Measuring popularity of cryptographic
libraries in internet-wide scans. In Proceedings of the 33rd Annual Computer Security Applications Conference. ACM,
162–175.

[27] Andy Ozment and Stuart E Schechter. 2006. Milk or wine: does software security improve with age?. In USENIX
Security Symposium. 93–104.

[28] James Andrew Ozment. 2007. Vulnerability discovery & software security. Ph.D. Dissertation. University of Cambridge.
[29] Jianfeng Pan, Guanglu Yan, and Xiaocao Fan. 2017. Digtool: A Virtualization-Based Framework for Detecting Kernel

Vulnerabilities. In 26th USENIX Security Symposium (USENIX Security 17). USENIXAssociation, Vancouver, BC, 149–165.
[30] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi, Konrad Rieck, Sascha Fahl, and Yasemin

Acar. 2015. Vccfinder: Finding potential vulnerabilities in open-source projects to assist code audits. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM, 426–437.

[31] Eric Rescorla. 2005. Is finding security holes a good idea? IEEE Security & Privacy 3, 1 (2005), 14–19.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

https://www.hackerone.com/resources/hacker-powered-security-report
https://www.hackerone.com/resources/hacker-powered-security-report
https://doi.org/10.1109/SP.2015.48

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:27

[32] Yaman Roumani, Joseph K Nwankpa, and Yazan F Roumani. 2015. Time series modeling of vulnerabilities. Computers
& Security 51 (2015), 32–40.

[33] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and Thorsten Holz. 2017. kAFL: Hardware-
Assisted Feedback Fuzzing for OS Kernels. In 26th USENIX Security Symposium (USENIX Security 17). USENIX Associa-
tion, Vancouver, BC, 167–182.

[34] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A fast
address sanity checker. In Presented as part of the 2012 {USENIX} Annual Technical Conference ({USENIX}{ATC} 12).
309–318.

[35] Richard Stallman et al. 1991. Gnu general public license. Free Software Foundation, Inc., Tech. Rep (1991).
[36] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,

Christopher Kruegel, and Giovanni Vigna. 2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.
In 23nd Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016.

[37] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang Zhai. 2014. Bug characteristics in
open source software. Empirical Software Engineering 19, 6 (2014), 1665–1705.

[38] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler, Peter Druschel, and Deepak Garg.
2019. ERIM : Secure, Efficient In-process Isolation with Protection Keys (MPK). In 28th USENIX Security Symposium
(USENIX Security 19). 1221–1238.

[39] CynthiaWagner, Alexandre Dulaunoy, GérardWagener, and Andras Iklody. 2016. Misp: The design and implementation
of a collaborative threat intelligence sharing platform. In Proceedings of the 2016 ACM on Workshop on Information
Sharing and Collaborative Security. ACM, 49–56.

[40] Walter Willinger, Vern Paxson, and Murad S Taqqu. 1998. Self-similarity and heavy tails: Structural modeling of
network traffic. A practical guide to heavy tails: statistical techniques and applications 23 (1998), 27–53.

[41] Chaowei Xiao, Armin Sarabi, Yang Liu, Bo Li, Mingyan Liu, and Tudor Dumitras. 2018. From Patching Delays
to Infection Symptoms: Using Risk Profiles for an Early Discovery of Vulnerabilities Exploited in the Wild. In
27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. 903–918. https:
//www.usenix.org/conference/usenixsecurity18/presentation/xiao

[42] Fabian Yamaguchi, Markus Lottmann, and Konrad Rieck. 2012. Generalized vulnerability extrapolation using abstract
syntax trees. In Proceedings of the 28th Annual Computer Security Applications Conference. ACM, 359–368.

[43] Mingyi Zhao, Jens Grossklags, and Peng Liu. 2015. An empirical study of web vulnerability discovery ecosystems. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM, 1105–1117.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

https://www.usenix.org/conference/usenixsecurity18/presentation/xiao
https://www.usenix.org/conference/usenixsecurity18/presentation/xiao

000:28 N. Alexopoulos et al.

11 ADDITIONAL FIGURES

’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17

0

5

p
h
p
5

’13 ’14 ’15 ’16 ’17

0

5

op
en
jd
k-
7

’13 ’14 ’15 ’16 ’17

0

10

w
h
ee
zy

’13 ’14 ’15 ’16 ’17
−5

0

5

w
h
ee
zy
-h
ig
h

Fig. 15. Laplace trend tests with 95% significance thresholds (dashed lines).

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

50

100

B
o
u

n
ty

a
m

o
u

n
t

(k
)

Q
1
’1

4

Q
1
’1

5

Q
1
’1

6

Q
1
’1

7

Q
1
’1

8

0

25

50

75

R
ep

o
rt

n
u

m
b

er rest

in IBB

Fig. 16. Bounty amounts in thousands of USD (left) and number of reports (right) of IBB reporters (at least 1
IBB report at some point in time) comparing reports in the IBB program against reports for other programs
in HackerOne over time.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:29

linux
iceape
samba

typo3-src
python-django

xpdf
quagga

graphite2
wpa
sudo

sendmail
symfony

movabletype-opensource
openvpn

pdfkit
gaim

dnsmasq
kdebase

wget
mercurial

t1lib
jruby

libwmf
libgcrypt20

traceroute-nanog
pound
acpid

libspring-java
tnef
epic

cscope
libphp-adodb

websvn
xen-qemu-dm-4.0

xerces-c
discount
w3m-ssl

masqmail
kdelibs-crypto

lsh-utils
lurker

libnet-dns-perl
libdbd-pg-perl
shibboleth-sp2

libsoup2.4
xdg-utils

rtmpdump
man2html

interchange
w3mmee

noweb
lftp

gatos
bmv

kismet
mydns

hostapd
xmms
xwine

netatalk
ircd-hybrid/ircd-ratbox

fex
libotr

libxcursor
libstruts1.2-java

requests
activemq

gst-plugins-ugly1.0
golang-1.11

1
0
−

1

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

Vulnerabilities

S
ize

in
K

S
L

o
C

Fig. 17. The distribution of vulnerabilities in the Debian ecosystem (years 2001-2017), along with the size of
the corresponding packages. The scale of axis x is logarithmic. All packages are taken into account. Every
tenth package name appears on the y axis for space reasons.

12 STATISTICAL TEST RESULTS
Detailed statistical test results refering to the plots of the paper’s main body are included in this
section.

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

000:30 N. Alexopoulos et al.

Table 6. OLS for reliability trends

Trend of the total number of vulnerabilities in Debian (Fig. 3b).

Dep. Variable: total R-squared: 0.796
Model: OLS Adj. R-squared: 0.783
Method: Least Squares F-statistic: 62.36
No. Observations: 18 AIC: 234.7
Df Residuals: 16 BIC: 236.5
Df Model: 1

coef std err t P> |t | [0.025 0.975]

const 120.0175 70.519 1.702 0.108 -29.476 269.511
x1 55.9195 7.081 7.897 0.000 40.907 70.932

Omnibus: 6.195 Durbin-Watson: 1.284
Prob(Omnibus): 0.045 Jarque-Bera (JB): 3.587
Skew: 0.994 Prob(JB): 0.166
Kurtosis: 3.910 Cond. No. 19.3

Trend of the average number of vulnerabilities in Debian (Fig. 3c).

Dep. Variable: av. per package R-squared: 0.919
Model: OLS Adj. R-squared: 0.914
Method: Least Squares F-statistic: 180.7
No. Observations: 18 AIC: 28.43
Df Residuals: 16 BIC: 30.21
Df Model: 1

coef std err t P> |t | [0.025 0.975]

const 1.1114 0.229 4.856 0.000 0.626 1.597
x1 0.3089 0.023 13.442 0.000 0.260 0.358

Omnibus: 3.018 Durbin-Watson: 1.680
Prob(Omnibus): 0.221 Jarque-Bera (JB): 1.300
Skew: 0.594 Prob(JB): 0.522
Kurtosis: 3.566 Cond. No. 19.3

Trend of the number of vulnerabilities in Debian Wheezy (Fig. 6).

Dep. Variable: Wheezy total R-squared: 0.564
Model: OLS Adj. R-squared: 0.540
Method: Least Squares F-statistic: 23.29
No. Observations: 20 AIC: 223.7
Df Residuals: 18 BIC: 225.7
Df Model: 1

coef std err t P> |t | [0.025 0.975]

const 153.1143 26.723 5.730 0.000 96.972 209.256
x1 11.6038 2.405 4.826 0.000 6.552 16.656

Omnibus: 1.893 Durbin-Watson: 1.736
Prob(Omnibus): 0.388 Jarque-Bera (JB): 0.748
Skew: 0.445 Prob(JB): 0.688
Kurtosis: 3.324 Cond. No. 21.5

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:31

Trend of the number of high-severity vulnerabilities in Debian Wheezy (Fig. 9).

Dep. Variable: Wheezy high R-squared: 0.318
Model: OLS Adj. R-squared: 0.280
Method: Least Squares F-statistic: 8.402
No. Observations: 20 AIC: 192.1
Df Residuals: 18 BIC: 194.1
Df Model: 1

coef std err t P> |t | [0.025 0.975]

const 46.8571 12.104 3.871 0.001 21.427 72.287
x1 3.1571 1.089 2.899 0.010 0.869 5.445

Omnibus: 20.152 Durbin-Watson: 1.990
Prob(Omnibus): 0.000 Jarque-Bera (JB): 26.851
Skew: 1.753 Prob(JB): 1.48e-06
Kurtosis: 7.464 Cond. No. 21.5

Table 7. OLS for bug bounty trends (Fig. 13)

Trend of average price in the IBB program.

Dep. Variable: IBB-all-av R-squared: 0.245
Model: OLS Adj. R-squared: 0.200
Method: Least Squares F-statistic: 5.513
No. Observations: 19 AIC: 343.1
Df Residuals: 17 BIC: 345.0
Df Model: 1

coef std err t P> |t | [0.025 0.975]

const 3918.9048 845.666 4.634 0.000 2134.706 5703.104
x1 -175.8950 74.917 -2.348 0.031 -333.955 -17.835

Omnibus: 26.771 Durbin-Watson: 1.939
Prob(Omnibus): 0.000 Jarque-Bera (JB): 42.644
Skew: 2.326 Prob(JB): 5.50e-10
Kurtosis: 8.677 Cond. No. 21.8

Trend of median price in the IBB program.

Dep. Variable: IBB-all-med R-squared: 0.426
Model: OLS Adj. R-squared: 0.392
Method: Least Squares F-statistic: 12.60
No. Observations: 19 AIC: 309.7
Df Residuals: 17 BIC: 311.6
Df Model: 1

coef std err t P> |t | [0.025 0.975]

const 2365.1079 350.802 6.742 0.000 1624.980 3105.236
x1 -110.3118 31.077 -3.550 0.002 -175.879 -44.745

Omnibus: 6.741 Durbin-Watson: 1.636
Prob(Omnibus): 0.034 Jarque-Bera (JB): 4.340
Skew: 1.116 Prob(JB): 0.114
Kurtosis: 3.705 Cond. No. 21.8

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

000:32 N. Alexopoulos et al.

Trend of average price in the IBB program - only high and critical severity bugs.

Dep. Variable: IBB-high-av R-squared: 0.023
Model: OLS Adj. R-squared: -0.303
Method: Least Squares F-statistic: 0.06945
No. Observations: 5 AIC: 86.40
Df Residuals: 3 BIC: 85.62
Df Model: 1

coef std err t P> |t | [0.025 0.975]

const 2851.3514 4400.740 0.648 0.563 -1.12e+04 1.69e+04
x1 -81.0811 307.661 -0.264 0.809 -1060.197 898.034

Omnibus: nan Durbin-Watson: 3.543
Prob(Omnibus): nan Jarque-Bera (JB): 0.406
Skew: 0.242 Prob(JB): 0.816
Kurtosis: 1.691 Cond. No. 119.

Trend of median price in the IBB program - only high and critical severity bugs.

Dep. Variable: IBB-high-med R-squared: 0.023
Model: OLS Adj. R-squared: -0.303
Method: Least Squares F-statistic: 0.06945
No. Observations: 5 AIC: 86.40
Df Residuals: 3 BIC: 85.62
Df Model: 1

coef std err t P> |t | [0.025 0.975]

const 2851.3514 4400.740 0.648 0.563 -1.12e+04 1.69e+04
x1 -81.0811 307.661 -0.264 0.809 -1060.197 898.034

Omnibus: nan Durbin-Watson: 3.543
Prob(Omnibus): nan Jarque-Bera (JB): 0.406
Skew: 0.242 Prob(JB): 0.816
Kurtosis: 1.691 Cond. No. 119.

Trend of average price in HackerOne.

Dep. Variable: all-all-av R-squared: 0.185
Model: OLS Adj. R-squared: 0.140
Method: Least Squares F-statistic: 4.094
No. Observations: 20 AIC: 278.6
Df Residuals: 18 BIC: 280.6
Df Model: 1

coef std err t P> |t | [0.025 0.975]

const 614.9606 105.436 5.833 0.000 393.448 836.473
x1 19.1973 9.488 2.023 0.058 -0.735 39.130

Omnibus: 15.357 Durbin-Watson: 1.291
Prob(Omnibus): 0.000 Jarque-Bera (JB): 14.439
Skew: 1.621 Prob(JB): 0.000732
Kurtosis: 5.611 Cond. No. 21.5

Trend of median price in HackerOne.

Dep. Variable: all-all-med R-squared: 0.222
Model: OLS Adj. R-squared: 0.179
Method: Least Squares F-statistic: 5.141
No. Observations: 20 AIC: 243.8
Df Residuals: 18 BIC: 245.8
Df Model: 1

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

The Tip of the Iceberg: On the Merits of Finding Security Bugs 000:33

coef std err t P> |t | [0.025 0.975]

const 241.2714 44.100 5.471 0.000 148.622 333.921
x1 8.9977 3.968 2.267 0.036 0.661 17.335

Omnibus: 7.109 Durbin-Watson: 1.723
Prob(Omnibus): 0.029 Jarque-Bera (JB): 4.967
Skew: 1.189 Prob(JB): 0.0834
Kurtosis: 3.550 Cond. No. 21.5

Trend of average price in HackerOne – only high and critical severity bugs.

Dep. Variable: all-high-av R-squared: 0.213
Model: OLS Adj. R-squared: 0.134
Method: Least Squares F-statistic: 2.707
No. Observations: 12 AIC: 217.0
Df Residuals: 10 BIC: 218.0
Df Model: 1

coef std err t P> |t | [0.025 0.975]

const 5446.5080 1574.979 3.458 0.006 1937.236 8955.780
x1 -191.7995 116.585 -1.645 0.131 -451.567 67.969

Omnibus: 1.989 Durbin-Watson: 2.116
Prob(Omnibus): 0.370 Jarque-Bera (JB): 0.237
Skew: -0.093 Prob(JB): 0.888
Kurtosis: 3.663 Cond. No. 39.0

Trend of median price in HackerOne – only high and critical severity bugs.

Dep. Variable: all-high-med R-squared: 0.282
Model: OLS Adj. R-squared: 0.210
Method: Least Squares F-statistic: 3.922
No. Observations: 12 AIC: 222.2
Df Residuals: 10 BIC: 223.2
Df Model: 1

coef std err t P> |t | [0.025 0.975]

const 6053.7931 1957.525 3.093 0.011 1692.157 1.04e+04
x1 -286.9574 144.902 -1.980 0.076 -609.820 35.905

Omnibus: 6.127 Durbin-Watson: 2.031
Prob(Omnibus): 0.047 Jarque-Bera (JB): 2.495
Skew: 0.937 Prob(JB): 0.287
Kurtosis: 4.216 Cond. No. 39.0

ACM Trans. Priv. Sec., Vol. 00, No. 0, Article 000. Publication date: 0000.

	Abstract
	1 Introduction
	2 Background & terminology
	3 Data collection and the DVAF
	4 Vulnerabilities in Debian
	5 Vulnerability Severity and Types
	6 Bug bounty programs
	7 Threats to validity
	8 Related Work
	9 Discussion and recommendations
	10 Conclusion
	References
	11 Additional Figures
	12 Statistical test results

